lunes, 9 de noviembre de 2009

Integrales Dobles - Link al Rincon del vago



De la misma manera en que la integral de una función positiva f (x) de una variable definida en un intervalo puede interpretarse cómo el área entre la gráfica de la función y el eje x en ese intervalo, la doble integral de una función positiva f (x, y) de dos variables, definida en una región del plano xy, se puede interpretar como el volumen entre la superficie definida por la función y el plano xy en ese intervalo. Al realizar una "integral triple" de una función f (x, y, z) definida en una región del espacio xyz, el resultado es un hipervolumen, sin embargo es bueno notar que si f (x, y, z) = 1 el resultado se puede interpretar como el volumen de la región de integración. Para integrales de órdenes superiores, el resultado geométrico corresponde a hipervolúmenes de dimensiones cada vez superiores.

La manera más usual de representar una integral múltiple es anidando signos de integración en el orden inverso al orden de ejecución (el de más a la izquierda es el último en ser calculado), seguido de la función y los diferenciales en orden de ejecución. El Dominio de Integración se representa simbólicamente para cada diferencial sobre cada signo de integral, o a menudo es abreviado por una letra en el signo de integral de más a la derecha:



Es importante destacar que es imposible calcular la antiderivada de una función de más de una variable por lo que las integrales múltiples indefinidas no existen.

Definición [editar]Una forma relativamente sencilla de definir las integrales múltiples es mediante su representación geométrica como la magnitud del espacio entre el objeto definido por la ecuación xn + 1 = f(x1,...,xn) y una región T en el espacio definido por los ejes de las variables independientes de la función f (si T es una región cerrada y acotada y f está definida en la región T). Por ejemplo, si n = 2, el volumen situado entre la superficie definida por x3 = f(x1,x2) y una región T en el plano x1x2 es igual a algúna integral doble, si es que la función f está definida en región T.

Se puede dividir la región T en una partición interior Δ formada por m subregiones rectangulares sin solapamiento que estén completamente contenidas en T. La norma Δ de esta partición está dada por la diagonal más larga en las m subregiones.

Si se toma un punto (x1i,x2i,...,xni) que esté contenido dentro de la subregión con dimensiones Δx1iΔx2i...Δxni para cada una de las m subregiones de la partición, se puede construir un espacio con una magnitud aproximada a la del espacio entre el objeto definido por xn + 1 = f(x1,...,xn) y la subregión i. Este espacio tendrá una magnitud de:


Entonces se puede aproximar la magnitud del espacio entero situado entre el objeto definido por la ecuación xn + 1 = f(x1,...,xn) y la región T mediante la suma de Riemann de las magnitudes de los m espacios correspondientes a cada una de las subregiones:


Esta aproximación mejora a medida que el número m de subregiones se hace mayor. Esto sugiere que se podría obtener la magnitud exacta tomando el límite. Al aumentar el número de subregiones disminuirá la norma de la partición:


El significado riguroso de éste último límite es que el límite es igual L si y sólo si para todo existe un δ > 0 tal que


para toda partición Δ de la región T (que satisfaga Δ < δ), y para todas las elecciones posibles de (x1i,x2i,...,xni) en la iésima subregión. Esto conduce a la definición formal de una integral múltiple:

Si f está definida en una región cerrada y acotada T del definido por los ejes de las variables independientes de f, la integral de f sobre T está dada por:

siempre que el límite exista. Si el límite existe se dice que f es integrable con respecto a T.

Maximos y Minimos - Link al Rincon del vago




MAXIMOS Y MINIMOS RELATIVOS
Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial es posible encontrar respuesta a estos problemas, que de otro modo parecería imposible su solución.
Entre los valores q puede tener una función (Y) puede haber uno que sea el mas grande y otro que sea el mas pequeño. A estos valores se les llama respectivamente punto máximo y punto mínimo absolutos.
Si una función continua es ascendente en un intervalo y a partir de un punto cualquiera empieza a decrecer, a ese punto se le conoce como punto critico máximo relativo, aunque comúnmente se le llama solo máximo.
Por el contrario, si una funcion continua es decreciente en cierto intervalo hasta un punto en el cual empieza a ascender, a este punto lo llamamos puntro critico minimo relativo, o simplemente minimo.
Una funcion puede tener uno, ninguno o varios puntos criticos.
Curva sin máximos ni mínimos función sin máximos ni mínimos
Función con un máximo curva con un máximo y un mínimo
Curva con un mínimo curva con varios mínimos y máximos
La pendiente de la recta tangente a una curva (derivada) en los puntos críticos máximos y mínimos relativos es cero, ya que se trata de una recta horizontal.
En los puntos críticos máximos, las funciones tienen un valor mayor que en su entorno, mientras que en los mínimos, el valor de la función es menor que en su entorno.
En un punto critico maximo relativo, al pasar la funcion de creciente a decreciente, su derivada pasa de positiva a negativa.
En un punto critico minimo relativo, la funcion deja de decrecer y empieza a ser creciente, por tanto, su derivada pasa de negativa a positiva.
METODOS PARA CALCULAR MAXIMOS Y MINIMOS DE UNA FUNCION
Para conocer las coordenadas de los puntos críticos máximos y mínimos relativos en una función, analizaremos dos mecanismos:
CRITERIO DE LA PRIMERA DERIVADA, UTILIZADO PARA UNA FUNCION CONTINUA Y SU PRIMERA DERIVADA TAMBIEN CONTINUA.
obtener la primera derivada.
igualar la primera derivada a cero y resolver la ecuación.
El valor o valores obtenidos para la variable, son donde pudiera haber máximos o mínimos en la función.
se asignan valores próximos (menores y mayores respectivamente) a la variable independiente y se sustituyen en la derivada. Se observan los resultados; cuando estos pasan de positivos a negativos, se trata de un punto máximo; si pasa de negativo a positivo el punto crítico es mínimo.
Cuando existen dos o más resultados para la variable independiente, debe tener la precaución de utilizar valores cercanos a cada uno y a la vez distante de los demás, a fin de evitar errores al interpretar los resultados.
sustituir en la función original (Y) el o los valores de la variable independiente (X) para los cuales hubo cambio de signo. Cada una de las parejas de datos así obtenidas, corresponde a las coordenadas de un punto crítico.
CRITERIO DE LA SEGUNDA DERIVADA
Este método es más utilizado que el anterior, aunque no siempre es más sencillo. Se basa en que en un máximo relativo, la concavidad de una curva es hacia abajo y en consecuencia, su derivada será negativa; mientras que en un punto mínimo relativo, la concavidad es hacia arriba y la segunda derivada es positiva.
Este procedimiento consiste en:
calcular la primera y segunda derivadas
igualar la primera derivada a cero y resolver la ecuación.
sustituir las raíces (el valor o valores de X) de la primera derivada en la segunda derivada.
Si el resultado es positivo, hay mínimo. Si la segunda derivada resulta negativa, hay un máximo.
Si el resultado fuera cero, no se puede afirmar si hay o no un máximo o mínimo.
sustituir los valores de las raíces de la primera derivada en la función original, para conocer las coordenadas de los puntos máximo y mínimo.
APLICACIÓN DE MAXIMOS Y MINIMOS RELATIVOS EN LA SOLUCION DE PROBLEMAS
Existen muchos campos del conocimiento (aritmética, geometría, economía, física, biología, industria, etc.) donde se presentan problemas que se resuelven aplicando los conceptos de máximos y mínimos del cálculo diferencial.
Para resolver los problemas a partir de los datos existentes, es importante en primer lugar, encontrar la expresión matemática de la función que represente el problema y cuyos valores máximos o mínimos se desean obtener.
Si la expresión matemática contiene varias variables, deberá plantearse en función de una sola; las condiciones del problema deben aportar suficientes relaciones entre las variables, para poderse expresar a todas ellas en función de una sola variable independiente.
Una vez que se tenga la función en la forma Y=f(X), se aplican las normas ya estudiadas.
En muchos problemas prácticos resulta muy sencillo identificar cuales valores críticos dan máximos o mínimos; y en consecuencia, ya no será necesario aplicar el procedimiento completo.
Es conveniente construir la grafica que represente la función en cuestión, a fin de verificar los resultados obtenidos.

Recta Normal y Plano Tangente- Link a Wikipedia



Sea C una curva, y A un punto de esta। Se supone que A es un punto regular de la curva, es decir que no es un punto anguloso: La curva no cambia repentinamente de dirección en A।
La tangente a C en A es la recta TA que pasa por A y que tiene la misma dirección que C alrededor de A.
La tangente es la posición límite de la recta (AM) (llamada cuerda de la curva), cuando M es un punto de C que se aproxima indefinidamente al punto A (M se desplaza sucesivamente por M1, M2, M3, M4...)
Si C representa una función f (no es el caso en el gráfico precedente), entonces la recta (AM) tendrá como coeficiente director (o pendiente)
, donde a es la abscisa de A y x la de M.
Por lo tanto, la pendiente de la tangente TA será:
Es, por definición, f '(a), la derivada de f en a.
La ecuación de la tangente es Ta: y = f '(a)·(x - a) + f(a)
La recta ortogonal a la tangente TA que pasa por el punto (a, f(a)) se denomina recta normal y su pendiente, en un sistema de coordenadas ortonormales, es dada por .Su ecuación es : y = - (x - a)/f '(a) + f(a) suponiendo claro está que f'(a) ≠ 0. Esta recta no interviene en el estudio general de las funciones pero sí en problemas geométricos relacionados con las cónicas, como por ejemplo para determinar el punto focal de una parábola.
Obtenido de "http://es.wikipedia.org/wiki/Recta_tangente"

Gradiente - Link a Wikipedia



En matemáticas financieras gradientes son anualidades o serie de pagos periódicos, en los cuales cada pago es igual al anterior más una cantidad; esta cantidad puede ser constante o proporcional al pago inmediatamente anterior. El monto en que varía cada pago determina la clase de gradiente:
Si la cantidad es constante el gradiente es aritmético (por ejemplo cada pago aumenta o disminuye en UM 250 mensuales sin importar su monto).
Si la cantidad en que varía el pago es proporcional al pago inmediatamente anterior el gradiente es geométrico (por ejemplo cada pago aumenta o disminuye en 3.8% mensual)
La aplicación de gradientes en los negocios supone el empleo de dos conceptos dependiendo del tipo de negocios:
Negocios con amortización (crédito), tipo en el que partimos de un valor actual, con cuotas crecientes pagaderas al vencimiento y con saldo cero al pago de la última cuota.
Negocios de capitalización (ahorro), tipo en el que partimos de un valor actual cero con cuotas crecientes acumulables hasta alcanzar al final del plazo un valor futuro deseado.
Gradientes diferidos. Son aquellos valorados con posterioridad a su origen. El tiempo que transcurre entre el origen del gradiente y el momento de valoración es el período de diferimiento o de gracia.
Gradientes anticipados o prepagables. Aquellos valorados anticipadamente a su final. El tiempo que transcurre entre el final del gradiente y el momento de valoración es el período de anticipación. Pago o cobro por adelantado. Los valores actuales y futuros de los gradientes anticipados (adelantados) o prepagables son calculadas a partir de las vencidas o pospagables multiplicado por (1 + i).
5.1. Gradiente uniforme
La progresión aritmética, quiere decir, cada término es el anterior aumentado (o disminuido) en un mismo monto.
El gradiente uniforme es una sucesión de flujos de efectivo que aumenta o disminuye en forma constante. El flujo de efectivo, bien sea ingreso o desembolso, cambia por la misma cantidad aritmética cada período de interés. El gradiente (G) es la cantidad del aumento o de la disminución. El gradiente (G) puede ser positivo o negativo. Las ecuaciones generalmente utilizadas para gradientes uniformes, pospagables son:
Permiten calcular el valor actual de un gradiente aritmético creciente o decreciente, conociendo la tasa de interés periódica, el gradiente y el plazo. Sólo tienen aplicación en el siguiente flujo de caja:
Para el cálculo de los gradientes prepagables, basta con multiplicar por (1 + i) el valor actual o futuro (según el caso) del gradiente pospagable.
5.2. Anualidades perpetuas o costo capitalizado
Son anualidades que tienen infinito número de pagos, en la realidad, las anualidades infinitas no existen, todo tiene un final; sin embargo, cuando el número de pagos es muy grande asumimos que es infinito.
Este tipo de anualidades son típicas cuando colocamos un capital y solo retiramos intereses.
Para el cálculo de la anualidad en progresión geométrica perpetua operamos, a través del límite cuando el número de términos de la renta (n) tiende a infinito. Siendo esto lo que caracteriza a una perpetuidad, de forma que el valor de los últimos flujos al descontarlos es insignificante, a saber:
Ingresando la variable C dentro del paréntesis, nos queda:
El término cuando n es muy grande hace tender su valor a cero por lo tanto el valor de la anualidad de muchos términos, llamada perpetuidad, la calculamos con la fórmula de la serie infinita:
Fórmula o ecuación de la serie infinita, sirve para calcular el valor actual de una perpetuidad, conociendo la tasa de interés periódica y la cuota.
Las perpetuidades permiten calcular rápidamente el valor de instrumentos de renta fija (VAP) por muchos periodos, «C» es el rendimiento periódico e «i» la tasa de interés para cada periodo. Ejemplos de perpetuidades, son las inversiones inmobiliarias en que existe un pago de alquiler por arrendamiento, las pensiones o rentas vitalicias, los proyectos de obras públicas, carreteras, presas, valuación de acciones, etc.
Para el mantenimiento a perpetuidad, el capital debe permanecer intacto después de efectuar el pago anual.
5.3. Gradiente geométrico
Esta serie corresponde al flujo de caja que cambia en porcentajes constantes en períodos consecutivos de pago. En la progresión geométrica cada término es el anterior multiplicado por un mismo número denominado razón de la progresión, representado por E.
5.3.1. Valor actual de un gradiente en escalera
Devuelve el valor actual de un gradiente en “escalera”, conociendo la tasa de interés periódica, el gradiente, el plazo total y el valor de la serie de pagos iguales.
Un gradiente en escalera es aquel en el cual se presenta una serie de pagos iguales (por ejemplo cuatro cuotas mensuales) y al terminar ocurre un incremento y vuelve a presentarse la serie mencionada.
5.4. Valor futuro de gradientes
A partir del VA actual obtenido con las fórmulas respectivas, calculamos el valor futuro de una serie con gradiente, ya sea aritmético o geométrico, creciente o decreciente, conociendo la tasa de interés periódica, el gradiente y el plazo.
El valor futuro de gradientes, tiene que ver con negocios de capitalización, para los cálculos partimos de cero hasta alcanzar un valor ahorrado después de un plazo determinado.

sábado, 17 de octubre de 2009

Derivada Direccional - link a wikipedia

La derivada direccional.

Definición :
La derivada de una función f (x,y) en la direcciónde un vector unitario
U = cos [Graphics:varvariablesgr50.gif] + sin [Graphics:varvariablesgr52.gif] se define como
lim (1/h) (f(x + h cos , y + h sen ) - f(x, y))

ejemplos:
    1)  f(x, y) = 18 - x2 - y2 ; u = cos  + sen  
Gráfica # 22 de Funciones de Varias Variables
    f(x, y) = 18 - x2 - y2 ; u = {, , 0}
    
    
    La derivada direccional es:


2) f(x, y) = 18 - x2 - y2 ; u = cos + sen
Gráfica #23 de Funciones de Varias Variables
     f(x, y) = 18 - x2 - y2 ; u = {, , 0}

    La derivada direccional es:

Evaluar las derivadas direccionales a partir de la definición sería tedioso e impráctico. El siguiente teorema nos será de gran utilidad.
Teorema:
Si z = f (x,y) es una función diferenciable y
U = cos [Graphics:varvariablesgr68.gif] + sen &thgr; [Graphics:varvariablesgr69.gif] , entonces
Duf = f o U
es la derivada direccional de f en la dirección de U.

Ejemplo: f(x, y) = 2x2y3 + 6xy; U = cos + sen
    f = {6y + 4xy3, 6x + 6x2y2, 0}
    Derivada direccional
    en la dirección de
    u = {, 0} es
    Duf = (6x + 6x2y2) + (6y + 4xy3)
    y en el punto {1, 1, 0}
tiene el valor 6 + 5

Derivación Implícita - link a vitutor

Funciones explícitas y funciones implícitas

En los cursos de cálculo la mayor parte de las funciones con que trabajamos están expresadas en forma explícita, como en la ecuación

dónde la variable y está escrita explícitamente como función de x. Sin embargo, muchas funciones, por el contrario, están implícitas en una ecuación. La función y = 1 / x, viene definida implícitamente por la ecuación: x y = 1.

Si queremos hallar la derivada para esta última ecuación, lo hacemos despejando y, así, y = 1 / x = x -1, obteniendo su derivada fácilmente: .

El método sirve siempre y cuando seamos capaces de despejar y en la ecuación. El problema es que sino se logra despejar y, es inútil este método. Por ejemplo, ¿cómo hallar dy/dx para la ecuación x2 - 2y3 + 4y = 2, donde resulta muy difícil despejar y como función explícita de x?

El método de regla de la cadena para funciones implícitas

Ya sabemos que cuando se derivan términos que solo contienen a x, la derivación será la habitual. Sin embargo, cuando tengamos que derivar un término donde aparezca la y, será necesario aplicar la regla de la cadena.

Ejemplo 1:

Aquí las variables coinciden: se deriva normalmente.

Ejemplo 2:

Aquí las variables no coinciden: se usa regla de la cadena.

Ejemplo 3:

Hallar , de la función implícita:

Aplicando la notación , a cada término y extrayendo las constantes;

.

En el primer término las variables coinciden, se deriva normalmente, en el segundo término se aplica la derivada de un producto (primer paréntesis cuadrado), lo mismo en el tercer término.

.

La regla de la cadena se aplica el término , como puede observarse a continuación claramente en el segundo paréntesis,

quitando paréntesis y ordenando los términos,

,

pasando algunos términos al lado derecho,

extrayendo el factor común ,

y finalmente despejando, obtenemos la respuesta requerida:

dy/dx con derivadas parciales

Mucho del trabajo anterior podría omitirse se usáramos la fórmula siguiente:

donde , representa la derivada parcial de la función f, con respecto a x,

y , representa la derivada parcial de la función f, respecto a la variable y.

Ejemplo 4:

Hallar , de la función implícita:

Solución:

Primero,

segundo,

ahora el cociente,

acomodando el signo menos en el numerador, obtenemos el resultado:

Para usar la fórmula se debe introducir al alumno a las derivadas parciales con algunos ejemplos. Obviando la teoría de las mismas que no es necesaria para el tema de derivación implícita.

Nota:

Solo doy un ejemplo ya que para el buen entendido del tema es suficiente. Cada lector puede consultar libros sobre el tema y probar la fórmula que proponemos.